

Решения компании Shimadzu для анализа примесей

Определение примесей в лекарственных препаратах и фармацевтических субстанциях

— Структурный анализ и количественное определение генотоксичных и других следовых примесей —

Руководства ICH и FDA по содержанию примесей в лекарственных средствах

Международной конференцией по гармонизации (ICH) были согласованы и обнародованы три директивы по определению примесей в фармацевтических средствах. В этих документах описан анализ широкого диапазона примесей, от органических до неорганических.

- Примеси в новых фармацевтических субстанциях (ІСН Q3A)
- Примеси в новых лекарственных препаратах (ICH Q3B)
- Руководство по остаточным растворителям (ICH Q3C)

Управление по контролю качества пищевых продуктов и лекарственных средств США (FDA) опубликовало проект руководства для промышленности «Генотоксичные и канцерогенные примеси в фармацевтических субстанциях и лекарственных препаратах: рекомендованные подходы». В нём приведены требования по проведению структурного анализа и осуществлению контроля качества меньших следовых количеств органических примесей, чем предписано в директивах ICH. Кроме того, в выпущенном FDA Руководстве «Остаточные растворители в лекарственных средствах, находящихся в обороте на территории Соединенных Штатов» отмечено введение новых мер по измерению содержания и удалению остаточных растворителей из лекарственных препаратов.

В данной брошюре разъясняются требования по анализу примесей, введённые Управлением по контролю качества пищевых продуктов и лекарственных средств США и, соответственно, аналитические решения Шимадзу для удовлетворения указанных требований.

Нормативные документы FDA по определению генотоксичных примесей в фармацевтических препаратах

Генотоксичность — это способность вещества оказывать необратимое действие на структуру и функции ДНК в клетках, тем самым вызывая гибель ДНК и ошибки в её репликации, мутации и хромосомные аберрации. Исключение генотоксичности является одним из важнейших моментов, касающихся безопасности вновь разрабатываемых лекарственных средств.

В директивах Международной конференции по гармонизации (ICH) приведены пороговые значения содержания примесей в общем случае. Однако в них не указываются числовые значения, касающиеся генотоксичности примесей, при этом стоит обратить внимание на комментарии наподобие «тем не менее, для потенциальных примесей, которые могут обладать особой активностью, выражающейся в токсическом или фармакологическом воздействии при содержании не выше (<) предела обнаружения, должны быть разработаны процедуры анализа» или «в случае, если примесь является особо токсичной, то нижние пороговые значения её содержания должны быть соответствующим образом снижены».

В конце 2008 года FDA опубликовало проект руководства «Генотоксичные и канцерогенные примеси в фармацевтических субстанциях и лекарственных средствах: рекомендованные подходы». В этом руководстве было введено понятие порога токсикологической настороженности (TTC — Threshold of Toxicological Concern) для генотоксичных примесей в фармацевтических субстанциях. Значение TTC соответствует ежедневному максимальному содержанию примеси в препарате, которую можно принять без генетического вреда для пациента. Значения TTC были рассчитаны исходя из вероятности (1 из 1000000) развития рака у пациента в течение всей его жизни. TTC соответствует 1,5 мкг в случае, если пациент принимает лекарство в течение 12 месяцев (Табл.1).

Например, при ежедневном приеме 30 мг активной фармацевтической субстанции концентрация примеси для допустимого ежедневного приема рассчитывается следующим образом: Предел концентрации (ppm) = TTC (мкг/день)/Доза (г/день) = = 1,5 (мкг/день)/0,03 (г/день) = 50 х 10-6 (= 50 ppm). По сравнению с предельным содержанием примеси, указанном в директивах ICH, контроль примесей на таком уровне потребует большей чувствительности детектирования.

Таблица 1. Допустимые содержания генотоксичных и мутагенных примесей в соответствии с проектом руководства FDA

	Продолжительность приёма препарата и ежедневное максимальное содержание примеси							
Продолжительность приёма препарата	Менее 14 дней	От 14 дней до 1 месяца	От 1 до 3 месяцев	От 3 до 6 месяцев	От 6 до 12 месяцев	Больше 12 месяцев		
Значение ТТС (мкг)	120	60	20	10	5	1,5		

Требования FDA по определению остаточных растворителей в лекарственных средствах

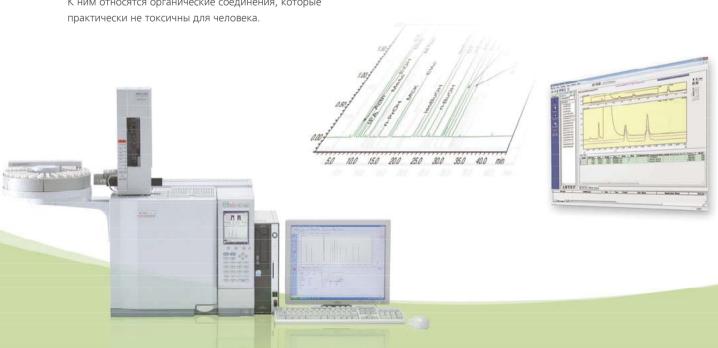
В руководстве ІСН по остаточным растворителям (ІСН Q3С) отмечено, что при производстве фармацевтических средств рекомендуется использовать растворители с низкой токсичностью, а также в этом документе приведены значения порога токсичности для нескольких растворителей.

Остаточные растворители в фармацевтических средствах определяются как летучие органические соединения, которые используются или образуются в процессе производства фармацевтических субстанций, фармацевтических ингредиентов или добавок. По степени риска органические растворители подразделяются на три класса.

• Растворители 1 класса: растворители, применения которых следует избегать

К ним относятся соединения с доказанной канцерогенностью в отношении человека, соединения с потенциальной канцерогенностью, а также экологически токсичные вещества.

• Растворители 2 класса: растворители, применение которых ограничено

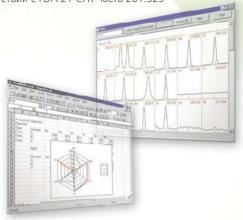

К ним относятся соединения, обладающие канцерогенным эффектом в отношении организмов животных и не обладающих генотоксичностью, а также вещества, обладающие другими видами необратимого токсического воздействия, например, нейротоксины или тератогены. Также к этой группе относят растворители, которые потенциально могут обладать другими видами опасной, но обратимой токсичности.

• Растворители 3 класса: растворители с низкой токсичностью

К ним относятся органические соединения, которые

В 2008 году FDA опубликовало проект руководства для промышленности «Остаточные растворители в лекарственных средствах, находящихся в обороте на территории Соединенных Штатов», предписывающий выполнять анализ и испытания согласно методу определения остаточных растворителей, описанному в статье Американской Фармакопеи USP <467>. В директивах ІСН не определены детальные процедуры анализа, но указано следующее: «Остаточные растворители обычно определяют методом хроматографии, например, газовой. Если целесообразно, для определения уровня остаточных растворителей следует использовать согласованные методы, предписанные Фармакопеями. С другой стороны, производитель вправе на своё усмотрение выбрать аттестованную процедуру анализа, наиболее подходящую для решения конкретной аналитической задачи». Однако новая статья USP <467> «Остаточные растворители» предписывает использование метода газовой хроматографии с парофазным дозированием в соответствии с Европейской фармакопеей (ЕР).

В этой статье предлагается вместо определения остаточных растворителей в готовых лекарственных формах суммировать результаты испытаний на содержание остаточных растворителей в фармацевтических субстанциях и вспомогательных веществах. Если суммарное содержание растворителей не превышает определённый порог, то проверять содержание остаточных растворителей в готовых лекарственных формах не требуется.



Требования FDA по контролю содержания неорганических примесей

Примером примесей в лекарственных средствах могут быть такие неорганические вещества как металлы, источником которых являются металлические катализаторы или технологическое оборудование, использующееся для синтеза фармацевтических субстанций. Эмиссионный спектрометр с индуктивно связанной

плазмой (ICP) и атомно-абсорбционный спектрофотометр являются подходящими приборами для определения алюминия в инфузионных растворах и металлических катализаторах, используемых при синтезе фармацевтических субстанций в соответствии с FDA 21 CFR Часть 201.323

Содержание

Статья	Описание	Прибор	Страница
Τροδορομμα ΕΠΛ	Структурный анализ ультраследовых примесей	Жидкостный хромато-масс-спектрометр (LCMS-IT-TOF $^{\circ}$)	Стр. 6
Требования FDA по содержанию		2D-LC/LCMS-IT-TOF®	Стр. 8
генотоксичных примесей	Количественный анализ ультраследовых примесей	Жидкостный хромато-масс-спектрометр (LCMS-2020)	Стр. 10
A		Система Co-Sense для примесного анализа	Стр. 12
Требования FDA по содержанию остаточных растворителей	Качественный и количественный анализ остаточных растворителей	Газовый хроматограф с парофазным дозированием пробы	Стр. 14
Требования FDA по содержанию неорганических примесей	Качественный и количественный анализ неорганических примесей	Спектрометр с индуктивно связанной плазмо Атомно-абсорбционный	й Стр. 16 Стр. 18
Поддержка	Оценка пригодности приборно-аналитического комплекса	спектрофотометр	Стр. 20
от компании Shimadzu	Управление данными	CLASS-Agent	Стр. 22

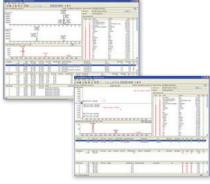
Структурный анализ ультраследовых примесей

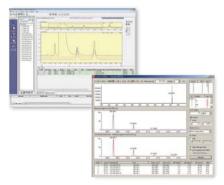
■ Структурный анализ ультраследовых органических примесей с использованием жидкостного хромато-масс-спектрометра LCMS-IT-TOF®

Областью действия проекта руководства FDA «Генотоксичные и канцерогенные примеси в фармацевтических субстанциях и лекарственных препаратах: рекомендованные подходы» является осуществление контроля над генотоксичностью и канцерогенностью ультраследовых примесей, содержащихся в новых фармацевтических препаратах, исследуемых фармацевтических субстанциях и препаратах-дженериках путём выполнения структурного анализа. В соответствии с этим документом, требуется проведение структурного анализа ультраследовых примесей, если ежедневная доза приёма активной

фармацевтической субстанции составляет 200 мг, причём контролируемый уровень примесей примерно в 150 раз меньше, чем это предписано в директивах ICH. Традиционным методом структурного анализа органических соединений является метод ЯМР. Однако в случае анализа смесей при необходимости достижения высокой чувствительности эффективным методом анализа ультраследовых органических примесей является приборный комплекс LCMS-IT-TOF®, с помощью которого можно определять точную молекулярную массу и проводить анализа в режиме MSⁿ.

■ Приборный комплекс LCMS-IT-TOF® позволяет определять точную молекулярную массу путём высокоэффективного измерения в режиме MSⁿ


- LCMS-IT-TOF® является масс-спектрометром, объединяющим технологии QIT (ионную ловушку) и ТОF (времяпролетный масс-спектрометр), что позволяет выполнять на нём измерения в режиме MSⁿ при помощи QIT и измерять массу ионов с высокой точностью и непревзойдённым разрешением при помощи TOF. Точное измерение массы в режиме MSⁿ, недоступное для классического BЭЖX/MC/MC анализа, стало реальностью.
- Компания Shimadzu предлагает разнообразное программное обеспечение для реализации детектирования ультраследовых примесей, а также предсказания состава и структуры. Программный
- продукт для структурного анализа метаболитов MetlD Solution позволяет проводить автоматическое извлечение пика сходного по структуре соединения на основе подобия спектров MS^n . Программа предсказания брутто-формулы (Formula Predictor) выводит результат путём сочетания значения точной массы, подсчёта изотопного распределения, азотного правила и фильтра по MS^n .
- Если неизвестно, в каком режиме ионизации следует проводить измерения, то масс-спектрометрическую информацию можно получать в режиме высокоскоростного и стабильного переключения полярности ионов.


Приборный комплекс LCMS-IT-TOF®: Жидкостный хромато-масс-спектрометр

LCMSsolution версии 3 Рабочая станция LCMS-IT-TOF®

MetID Solution
ПО для структурного анализа
метаболитов для LCMS-IT-TOF®

Formula Predictor ПО для LCMS-IT-TOF®

Анализ следовых примесей в атропине

Ниже приведены результаты анализа коммерчески доступного атропина, к которому была добавлена следовая примесь 0,001% *п*-нитрофенола. На рис. 1 в увеличенном масштабе представлена полученная на ЖХ хроматограмма. Стрелкой указан пик добавленного *п*-нитрофенола. На рис. 2 показаны результаты анализа пика *п*-нитрофенола с использованием системы LCMS-IT-TOF ®. На рис. 3 и рис. 4 показаны результаты, полученные при использовании программы предсказания бруттоформулы. В качестве возможного кандидата присутствует и брутто-формула добавленного *п*-нитрофенола.

Условия ЖХ-анализа

Колонка Shim-pack XR-ODS

... 2,0 мм (внутр.диам.) \times 75 мм (дл.); 2,2 мкм Подвижная фаза A: 0,1% муравьиная кислота – вода

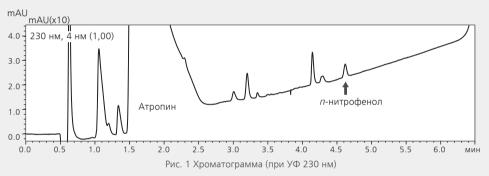
В: 0,1% муравьиная кислота – ацетонитрил

Градиент 10% В (0 мин) – 45% В (5 мин)

Скорость потока 0,4 мл/мин Объём пробы 10 мкл

Условия МС-анализа

Режим ионизации электроспрей (ESI) в в режиме отрицательной ионизации


Поток газа-распылителя 1,5 л/мин
Температура линии десольватации 200 °C

Температура нагревательного блока 200 °C Давление газа-осущителя 0.1 МПа

Диапазон сканирования MS: m/z 100 – 600

MS/MS: m/z 50 – 500

Программа МС-анализа на слив (1,0–3,8 мин)

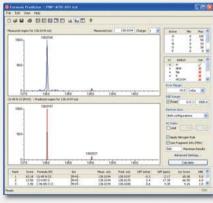


Рис. З Результаты предсказания брутто-формулы

Рис. 4 Предсказанные брутто-формулы

Структурный анализ ультраследовых примесей 2D-LC/LCMS-IT-TOF ®

Структурный анализ ультраследовых примесей с использованием системы Co-Sense для ЖХ/МС

Для осуществления контроля качества методом ВЭЖХ обычно используют нелетучие подвижные фазы на основе фосфатного буфера, однако для анализа методом ЖХ/МС с ионизацией при атмосферном давлении условия анализа требуется изменить, а именно — использовать летучую подвижную фазу. Внесение подобных изменений рискованно и может привести к изменению порядка элюирования компонентов или к элюи-

рованию примесей в непосредственной близости от пика целевого вещества. Следовательно, при изменении существующих условий метода ВЭЖХ для оптимизации времени и ресурсов необходимо соблюдать особую осторожность, так как запросы по идентификации примесей, поступающие с производственных площадок, должны быть обработаны оперативно.

Особенности двумерной системы Co-Sense 2D-LC/LCMS-IT-TOF®

- Обессоливание и отделение ион-парного реагента в режиме он-лайн позволяет проводить структурный анализ пиков неидентифицированных примесей без учета условий ЖХ разделения.
- LCMS-IT-TOF® является масс-спектрометром, объединяющим технологии OIT (ионную ловушку) и ТОГ (времяпролетный масс-спектрометр), что позволяет выполнять на нём измерения в режиме MSⁿ при помощи QIT и измерять массу ионов с высокой точностью и непревзойдённым разрешением при помощи TOF. Точное измерение массы в режиме MS^n , недоступное для классического ВЭЖХ/МС/МС анализа, стало реальностью.
- Компания Shimadzu предлагает разнообразное программное обеспечение для реализации детектирования ультраследовых примесей, а также предсказания состава и структуры. Программный продукт для структурного анализа метаболитов MetID Solution позволяет проводить автоматическое извлечение пика сходного по структуре соединения на основе подобия спектров MSⁿ. Программа предсказания брутто-формулы (Formula Predictor) выводит результат путём сочетания значения точной массы, подсчёта изотопного распределения, азотного правила и фильтра по MSⁿ.
- Если неизвестно, в каком режиме ионизации следует проводить измерения, то массспектрометрическую информацию можно получать в режиме высокоскоростного и стабильного переключения полярности ионов.

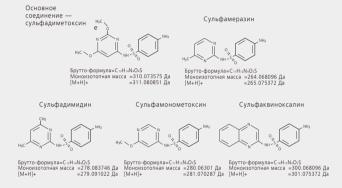
Принцип работы системы

Система Co-Sense для ЖХ/МС состоит из трёх частей: в первом измерении происходит отделение примесей, затем целевые примеси концентрируются и обессоливаются в ловушке и далее попадают

Содержащиеся в подвижной фазе на этапе первого измерения фосфат и прочие растворённые вещества удаляются на участке концентрирования и обессоливания в ловушке, а являющаяся целью анализа примесь выделяется на этапе второго измерения.

В случае, если для разделения на этапе первого измерения используется ион-парный раствор, являющаяся целью анализа примесь и ион-парный раствор разделяются на этапе второго измерения. Это позволяет проводить анализ целевой примеси без выбора условий анализа в первом измерении.

■ Последовательность работы клапана-переключателя



2D-LC/LCMS-IT-TOF ®

Экспериментальные данные

В качестве объекта исследования была подготовлена смесь сульфадиметоксина и четырёх сульфаниламидных соединений родственной структуры. Уровень концентрации основного компонента составил 500 мкг/л. Ниже показаны структурные формулы примесей и основного компонента. Результаты измерения приведены на рис. 1–3, присутствие каждой примеси было подтверждено. Система 2D-LC/LCMSIT-TOF® даёт исследователю возможность избежать сложного ЖХ/МС измерения с применением условий для летучей подвижной фазы. Состав примесей можно в этом случае подтвердить, сравнив полученные данные с результатами холостого анализа, что позволяет проводить уверенную идентификацию при осуществлении контроля качества на производстве.

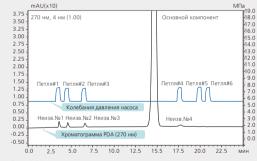


Рис.1 Хроматограмма, полученная на диодно-матричном детекторе в первом измерении

Синей линией показаны колебания давления в системе, чёрной - показания детектора при УФ 270 нм. Оба графика подтверждают друг друга, а элюированные пики заключены в петле.

Колонка Подвижная фаза Shim-pack VP-ODS 4,6 мм (внутр.диам.) × 150 мм (дл.), 5 мкм 0,01 моль/л Фосфатный буфер (рН 2,6)

Смесь с метанолом Скорость потока п.ф 1 мл/мин

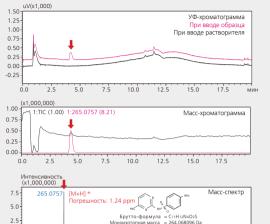
Температура колонки Объём пробы 40 °C

Длина волны детектирова-ния на диодной матрице 200-350 нм (наблюдение при 270 нм)

Условия анализа <ЖХ второго измерения>

Shim-pack XR-ODS 2,0 мм (внутр.диам.) \times 75мм (дл.); 2,2 мкм 0,1% раствор муравьиной кислоты Метанол Колонка Подвижная фаза А Подвижная фаза В 10% В (0 мин)–50% В (10 мин)–10% В (10,01–20 мин)

Соотношение п. фаз Скорость потока п.ф


Температура колонки Объём пробы 10 мкл (ёмкость петли)

Длина волны детектирова-ния в УФ-диапазоне

<Мас-спектрометрия>

 КМас-спектрометрия>
 Режим ионизации
 Поток газа-распылителя
 Давление газа-осушителя
 Приложенное напряжение
 КВ Температура линии десольватации Температура нагревательного блока 20 Диапазон сканирования *m/z* 100–1000

ЖХ второго измерения неизвестного компонента №1

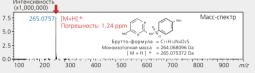


Рис 2. УФ-хроматограмма, масс-хроматограмма и масс-спектр неизвестного компонента №1 Розовая линия: при вводе образца Чёрная линия: при вводе растворителя (холостая проба) Красная стрелка: примесь

ЖХ второго измерения неизвестного компонента №2

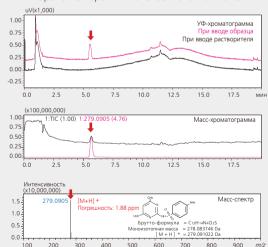


Рис 3. УФ-хроматограмма, масс-хроматограмма и масс-спектр неизвестного компонента №2

Ссылка: Technical Report (Improved Drug Impurity ID Efficiency under CMC using 2-D LC/MS) C146-E149

Количественный анализ ультраследовых примесей

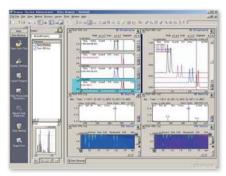
LCMS-2020

Количественный анализ ультраследовых органических примесей с использованием системы сверхбыстрой хромато-масс-спектрометрии на основе жидкостного хроматографа Prominence UFLC и масс-детектора LCMS-2020

Источниками органических примесей в лекарствах могут быть примеси активных фармацевтических субстанций, вещества, образующиеся в процессе производства лекарственной формы либо продукты разложения, образующиеся при хранении. Масс-спектрометр, пригодный и для общего детектирования, и для специфического анализа, эффективен для проведения полного и продуктивного количественного анализа ультраследовых примесей, предписанного в проекте руководства FDA по испытанию активных фармацевтических ингредиентов, испытаний в ходе

фармацевтического производственного процесса и испытаний стабильности «Генотоксичные и канцерогенные примеси в фармацевтических субстанциях и лекарственных препаратах: рекомендованные подходы». Система сверхбыстрой хромато-масс-спектрометрии производства компании Shimadzu на основе жидкостного хроматографа Prominence UFLC и масс-детектора LCMS-2020, особенностью которой является применение сверхбыстрых технологий UF (Ultra-Fast), обеспечит выполнение сверхбыстрого анализа ультраследовых примесей.

Сверхбыстрый анализ возможен с помощью Prominence UFLC и LCMS-2020


- Система сверхбыстрой хромато-масс-спектрометрии на основе Prominence UFLC и LCMS-2020 позволяет проводить ВЭЖХ анализ быстрее и точнее, тем самым повышая эффективность работы Вашей лаборатории.
- Чёткие пики, полученные с использованием сверхбыстрой хроматографии, можно детектировать при помощи трёх технологий «UF»: «UFswitching» для сверхбыстрого переключения полярности ионизации, «UFscanning» для сверхбыстрого сканирования диапазона масс и «UFsensitivity» для сохранения чувствительности прибора при повышении его быстродействия на основе вновь разработанной ионной оптики.
- Детектирование ультраследовых примесей в широком диапазоне концентраций требует наличия не только высокой чувствительности, но и широкого динамического диапазона. Вновь разработанная для LCMS-2020 система ионной оптики Qarray® позволяет достичь превосходной чувствительности, воспроизводимости и линейности.
- Работа с различными по свойствам примесями, (например, жирорастворимыми и водорастворимыми) требует наличия широкого ряда вариантов ионизации. Одним из методов ионизации для LCMS-2020 является сдвоенный источник ионизации DUIS-2020. В нём объединены методы ионизации электроспреем и химической ионизации при атмосферном давлении. Это гарантирует, что не будут пропущены примеси, обладающие даже самыми разными полярностями.

Принципиальная схема DUIS-2020

Жидкостный хромато-масс-спектрометр

LabSolutions LCMS Версия 5 Рабочая станция для LCMS-2020

Количественный анализ ультраследовых примесей в атропине

Ниже приведены результаты анализа микроследовой примеси в коммерчески доступном растворе атропина концентрацией 50 мг/мл, к которому был добавлен п-нитрофенол в количестве 50 нг/мл (0,0001%). На рис. 1 в увеличенном масштабе представлена полученная на ЖХ хроматограмма. а на рис. 2 показаны результаты анализа на LCMS-2020 в режиме SIM. Микроследовая примесь, которую невозможно определить методом детектирования в УФ-диапазоне, легко детектируется при времени удерживания около 4,7 минут в режиме SIM. На рис. 3 показана калибровочная кривая для п-нитрофенола. В табл. 1 приведены данные о воспроизводимости измерения. Количественное определение подтверждается при максимальном коэффициенте вариации 7% в диапазоне от 0,5 до 100 мг/л и минимальном r2 = 0.999

LCMS-2020 позволяет проводить количественное определение соединений на уровне 0,5 нг/мл (что эквивалентно 0,000001%). Условия ЖХ-анализа

Shim-pack XR-ODS Колонка

2,0 мм (внутр.диам.) × 75 мм (дл.); 2,2 мкм Подвижная фаза А: 0.1% муравьиная кислота – вола

В: 0.1% муравьиная кислота – ацетонитрил

10% В (0 мин) - 45% В (5 мин)

Скорость потока 0.4 мл/мин

Объем пробы 10 мкл

на слив (1,0–3,8 мин) Программа времени

Условия МС-анализа

Гралиент

Метод ионизации электроспрей (ESI) в отрицательных ионах

Поток газа-распылителя 1,5 л/мин Температура линии десольватации 450 °C Температура нагревательного блока 10 л/мин Расхол газа-осущителя m/z 50 - 1000 Диапазон сканирования

Время события 0.5 c / scan Монитор ионов SIM m/z 138.0, время события: 0,1 с

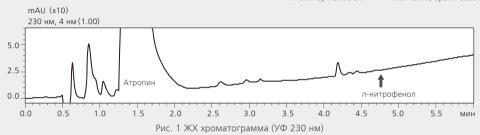


Таблица 1 Воспроизводимость количественного определения п-нитрофенола

							/
				•/			
			/				
		/	/				
/							
	-				 . ,		. , .
2	25.0	0		50.0	75.0)	Конц
			D ()		nu		75.0 ривая для

	1	2	3	4	5	6	Mean	CV	
0,5 нг/мл	21536	21759	22023	20519	24891	22562	22351	6.64%	
1,0 нг/мл	41389	40039	39994	41014	44080	36917	40572	5.74%	
5,0 нг/мл	192237	205172	219076	220101	219022	213284	211482	5.19%	
10,0 нг/мл	470508	465121	464324	465414	472220	463030	466769	0.79%	
50,0 нг/мл	2306458	2335840	2333257	2336193	2336409	2370186	2336391	0.87%	
100,0 нг/мл	4563089	4487412	4514051	4502426	4509868	4503227	4513346	0.58%	

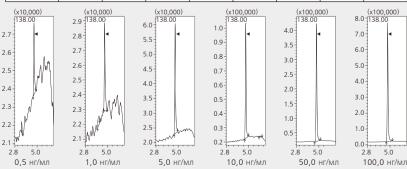


Рис. 4 Масс-хроматограмма в режиме SIM для каждой концентрации

Количественный анализ ультраследовых примесей

Система Co-Sense для анализа примесей

Количественный анализ ультраследовых примесей с использованием системы «Co-Sense для анализа примесей»

Другим методом количественного анализа ультраследовых примесей в соответствии с проектом руководства FDA «Генотоксичные и канцерогенные примеси в фармацевтических субстанциях и лекарственных препаратах: рекомендованные подходы» является количественный анализ примесей с высокой чувствительностью с применением концентрации в ловушке, двумерного разделения и детектора поглошения.

При реализации этого метода для достижения разделения и количественного определения с высокой чувствительностью некоторых ультраследовых примесей можно в полной мере использовать такие различные условия анализа, как фосфатные буферы и ионпарные реагенты. Достигнуть этого можно при помощи системы Shimadzu Co-Sense для анализа примесей.

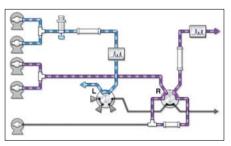
Ocoбенности системы Co-Sense для анализа примесей

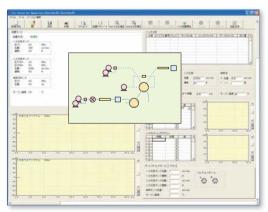
- Система Co-Sense для анализа примесей является комбинацией концентрирования в режиме он-лайн и двумерного разделения, в результате чего чувствительность повышается в 20 раз по сравнению с одномерным разделением. Это позволяет проводить анализ с высокой чувствительностью, прекрасной стабильностью и сниженными издержками даже при использовании традиционных детекторов, например, детектора поглощения.
- Ультраследовые примеси, недостаточно отделённые от основных компонентов или от других примесей на этапе разделения в первом измерении, могут быть выделены и определены количественно с высокой точностью, что достигается использованием колонок с различными удерживающими свойствами, а также при изменении состава подвижной фазы.
- Специализированное программное обеспечение с графическим пользовательским интерфейсом позволяет любому оператору с лёгкостью работать с системой на всех этапах, от задания условий анализа до промывки системы.

Cxeма анализа с использованием системы Co-Sense для анализа примесей

Этап 1: Отделение целевых примесей

Микроследовая примесь отделяется от основных компонентов и других примесей в полупрепаративном масштабе. После того, как время элюирования целевой примеси установлено, дальнейшее разделение производят путём изменения параметров на втором этапе разделения. В этом случае достижение полного разделения не требуется (см. анализ примесей в фармацевтических препаратах на странице 13).




Схема системы

Этап 2: Концентрирование целевых примесей в ловушке

Элюированная на этапе разделения в первом измерении целевая примесь вводится в колонку-ловушку, где она надёжно удерживается и разбавляется.

Этап 3: Измерение целевых примесей

Сконцентрированные в колонке-ловушке целевые примеси вводятся в систему разделения на втором этапе и детектируются с высокой чувствительностью. Кроме того, задав для разделений в первом и втором измерении разные параметры, становится возможным отделение основных компонентов или других примесей, которые не удалось разделить на этапе первого измерения. Это позволяет одновременно с концентрированием достичь прекрасных результатов анализа ультраследовых примесей.

Специализированное программное обеспечение

Сравнение максимальных откликов при исследованиях тестового образца

Ниже приведено сравнение величины пиков после автоматического концентрирования путём применения системы Co-Sense. В качестве тестового образца использовали раствор метилпарабена в метаноле (1 нг/мл, вводимый объем 200 мкл).

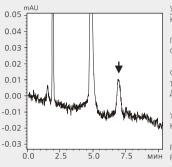


Рис. 1 Хроматограмма разделения в первом измерении (до концентрирования)

Условия анализа (первое измерение) Shim-pack VP-ODS 5 мкм (10,0 мм (внутр.диам.) × 150 мм (дл.) Подвижная А: 10 ммоль/л фосфатный буфер В: метанол, конц. В 40% Изократический режим Скорость потока 4.0 мл/мин Температура 40 °C Длина волны 254 нм

Условия концентрирования в ловушке Shim-pack PRC-ODS 5 MKM (8,0 мм (внутр. диам.) × 15 мм (дл.) Разбавитель 10 ммоль/л фосфатный буфер Расход 8 мл/мин 6,41 мин → 7,4 мин Интервал

работы ловушки

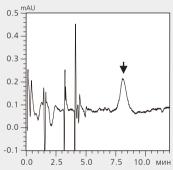


Рис. 2 Хроматограмма разделения во втором измерении (после автоматического концентрирования)

Условия анализа (второе измерение) Shim-pack VP-ODS 5 MKM (2,0 мм (внутр. диам.) × 150 мм (дл.) Подвижная А: 10 ммоль/л фосфатный буфер фаза В: ацетонитрил Градиент 20 % (8.01 –13 мин) Скорость потока 0.3 мл/мин Температура 40 °C

254 нм

Рис. 4 Хроматограмма разделения в первом измерении (до концентрирования)

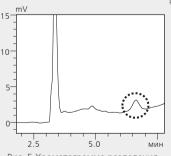
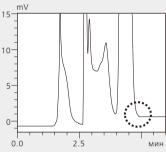


Рис. 5 Хроматограмма разделения во втором измерении (после автоматического концентрирования)


Таблица 1 Результаты воспризводимости

Площадь
44,911
44,657
44,464
44,616
44,937
44,717
0.45

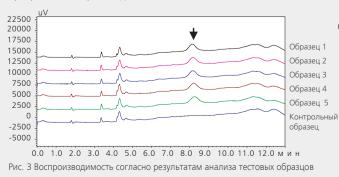
Анализ примесей в фармацевтических препаратах

В качестве имитации примеси в фармацевтический препарат был добавлен кофеин в концентрации 0,0008%. До проведения концентрирования на пик кофеина накладывался пик другой примеси в фармацевтическом препарате. Концентрирование и оптимизация условий разделения позволяют провести детектирование с высокой чувствительностью и высоким

(Вводимый объём фармацевтического препарата: 1,5 мл при концентрации 0,5 мг/мл).

словия анализа (первое измерение) олонка Shim-pack VP-ODS 5 мкм 10,0 мм (внутр. диам.) × 150 мм (дл.) Подвижная А: 20 ммоль/л фосфатный буфер (рН 2.5) В: ацетонитрил, конц. В 15% Изократический режим Скорость потока 4,7 мл/мин

. Температура 40°C 272 нм


Условия концентрирования в ловушке Shim-pack PRC-ODS 5 мкм 8,0 мм (внутр. диам.) × 150 мм (дл.) Колонка Разбавитель 100 ммоль/л водный раствор ацетата аммония

Скорость потока 12 мл/мин Интервал 4,21 мин > 4,86 мин работы ловушки

Воспроизводимость результатов анализа тестовых образцов

Раствор метилпарабена в метаноле (40 нг/мл, объём пробы 50 мкл) был проанализирован пять раз. Была достигнута прекрасная воспроизводимость (RSD= 0.45%).

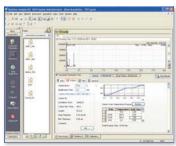
Качественный и количественный анализ остаточных растворителей

Определение содержания остаточных растворителей с использованием GC-2010 Plus и парофазного автодозатора

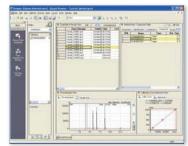
Решения Международной Конференции по Гармонизации (ICH) являются решающими для стандартизации аналитических методов Фармакопеи Японии, Фармакопеи США и Европейской фармакопеи. Например, метод определения содержания остаточных растворителей в фармацевтических продуктах, приведённый в статье USP <467> «Остаточные растворители» Фармакопеи США (USP 32), был изменён с обычного метода определения летучих органических примесей на метод определения остаточных растворителей в соответствии с Европейской фармакопеей. FDA включило в проект руководства для промышленности «Остаточные растворители в лекарственных средствах, находящихся в обороте на территории Соединенных Штатов» следующие рекомендации:

 Контроль качества фармацевтических препаратов, вне зависимости от варианта подачи на регистрацию (заявка на регистрацию нового фармацевтического препарата (NDA)

- или сокращённая заявка (ANDA)), должен осуществляться в соответствии со статьёй USP <467> «Остаточные растворители».
- Вместо определения остаточных растворителей в готовых лекарственных формах можно проводить отдельные испытания активных фармацевтических ингредиентов и вспомогательных соединений.
- Наряду с методами анализа, перечисленными в методе USP <467>, допускается использовать другую аналитическую процедуру, должным образом зарегистрированную и проверенную в соответствии с требованиями сGMP (стандарты по контролю за производством фармацевтических препаратов и контролю их качества).


Газовый хроматограф Shimadzu GC-2010 Plus соответствует перечисленным требованиям и позволяет выполнять анализ остаточных растворителей.

Особенности газового хроматографа GC-2010 Plus с парофазным автодозатором


- Газовый хроматограф GC-2010 Plus производства компании Shimadzu является прибором нового поколения, позволяющим выполнять определение веществ на следовых уровнях с высокой достоверностью и высокой скоростью, а также чрезвычайно удобен в использовании.
- Одни из лучших в своем классе высокочувствительные детекторы (ПФД и ПИД) позволяют получать результаты анализа с высокой точностью.
- В приборе реализованы разработанные компанией Shimadzu уникальные технологии для точнейшего управления расходом газа и переключения потоков, а также усовершенствованная технология управления потоками (Advanced Flow Technologies), что сокращает цикл анализа и повышает производительность.
- Исключительная простота в использовании сокращает временные затраты и снижает себестоимость анализа.

GC-2010 Plus с парофазным автодозатором HS-20 с технологией Advanced Flow Technology (Технология усовершенствованного управления потоками)

Рабочий экран

Экран идентификации и количественного анализа

LabSolution

Рабочая станция для ГХ

Анализ с использованием GC-2010 Plus и парофазного автодозатора

Фармакопея США, Европейская фармакопея и «Требования по остаточным растворителям в лекарственных средствах», выпущенные Министерством Социальной Политики Японии, подразделяют растворители по их токсичности на Растворители 1 класса (растворители, применения которых следует избегать), Растворители 2 класса (растворители, применение которых ограничено) и Растворители 3 класса (растворители с низкой токсичностью). Ниже представлены анализы водных растворов соединений Класса 1 и Класса 2.

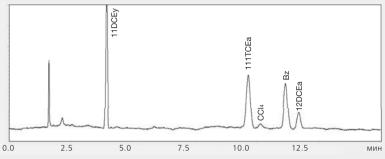


Рис. 1 Стандартный образец растворителей Класса 1 (водный раствор, Процедура А)

 11DCEy
 1,1-Дихлорэтилен

 111TCEa
 1,1,1-Трихлорэтан

 CCl4
 Четыреххлористый углерод

 Bz
 Бензол

12DCEa 1,2-Дихлорэтан

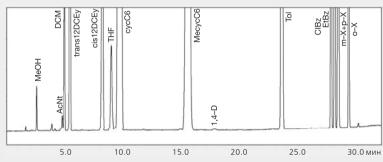


Рис. 2 Стандартный образец растворителей Класса 2 (водный раствор, Процедура А)

Гексан

Нитрометан

Хлороформ

Пиридин Метилбутилкетон

Тетралин

Трихлорэтилен

1.2-Диметоксиэтан

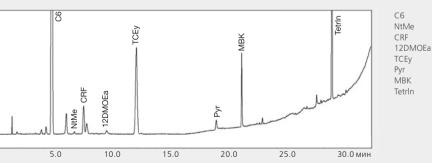


Рис. З Стандартный образец растворителей Класса 2 (водный раствор, Процедура В)

Условия ГХ-анализа

 Колонка
 Rtx-624 30 м \times 0,53 мм (внутр. диам.), 3 мкм

 Газ-носитель
 He, 35 см/с, деление потока 1:10

Детектор ПИД Температура инжектора 140 °C Температура детектора 250 °C

Температура колонки 40 °C (20 мин) − (10 °C/мин) − 240 °C (20 мин)

Условия парофазного анализа

Температура уравновешивания 80 °С Время уравновешивания 60 мин

Качественный и количественный анализ неорганических примесей

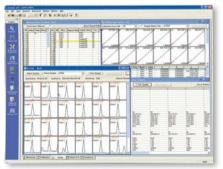
спектрометр с индуктивно связанной плазмой

■ Тенденции в анализе неорганических примесей с использованием спектрометра с индуктивно связанной плазмой

В директивах ICH неорганические примеси выделены в отдельный класс примесей в фармацевтических продуктах. К неорганическим примесям относятся металлы, источником которых являются металлические катализаторы или оборудование, использующееся для синтеза фармацевтических субстанций.

Для анализа следовых количеств неорганических примесей, например, для определения алюминия в инфузионных растворах в соответствии с FDA 21 CFR Часть 201.323, эффективным является использование спектрометров с индуктивно связанной плазмой

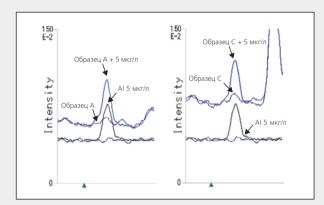
Отличительные особенности спектрометра с индуктивно связанной плазмой


- Одновременное определение всех элементов. Быстрый качественный и количественный анализ. Надёжный контроль отсутствия примесей металлов в конечном или промежуточных продуктах
- Высокая чувствительность и широкий диапазон линейности калибровочной кривой даёт возможность легко устанавливать условия анализа.
- Фосфор (Р) и серу (S) можно измерять точно так же, как и другие элементы.

Атомно-эмиссионный спектрометр параллельного действия с индуктивно связанной плазмой

Отличительные особенности эмиссионных спектрометров с индуктивно связанной плазмой серии ICPE-9800

- Укомплектованы эшелле-монохроматором для измерений с высокой скоростью и высоким разрешением, а также однодюймовым ССD-детектором.
- Разработанная компанией Shimadzu уникальная мини-горелка наполовину сокращает потребление аргона без потери чувствительности.
- Многочисленные функции Помощника позволяют любому оператору быстро выполнять анализ с высокой точностью.
 Кроме того, они упрощают такую важную процедуру, как выбор длины волны.

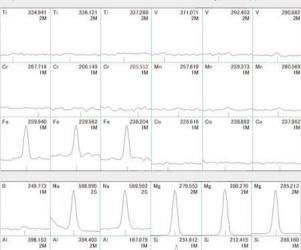


Окно с длинами волн и калибровочными зависимостями рабочей станции спектрометра

Определение алюминия в инфузионных растворах

Требованием FDA к внутривенным лекарственным средствам, используемым в значительных количествах для парентерального введения (мин. 100 мл), является ограничение содержания алюминия: не более 25 мкг/л. Ниже приведен пример высокочувствительного анализа инфузионного раствора на содержание алюминия (введённого в образец до концентрации в 5 мкг/л) методом спектрометрии с индуктивно связанной плазмой.

Поскольку инфузионные лекарственные формы обычно содержат высокие концентрации (порядка граммов на литр) активных компонентов, включая такие органические вещества, как аминокислоты и сахара, и такие электролиты, как натрий и калий, то измерение соедержания алюминия на уровне мкг/л (ppb) может вызвать определённые затруднения. На анализ при помощи эмиссионного ИСП-спектрометра не влияют подобные сопутствующие элементы, а следовательно, вполне возможно определять алюминий в образцах, содержащих такие инфузионные компоненты, как аминокислоты, электролиты и сахара.



- (а) Наложенные профили спектральных линий образца А и стандарта
- (b) Наложенные профили спектральных линий образца С и стандарта

Рис. 1 Профиль спектральной линии алюминия (167,079 нм)
Образец А: образец с высоким содержанием аминокислоты
Образец С: образец с высоким содержанием электролита,
сахара и аминокислоты

Определение тяжелых металлов в лактозе

Особенностями спектрометрии с индуктивно связанной плазмой являются высокая чувствительность, широкий динамический диапазон, а также возможность одновременного определения множества элементов. Ниже приведен пример качественного определения тяжёлых металлов в лактозе на уровне ppb.

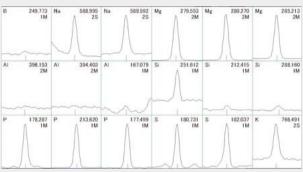


Рис. 2 Качественный анализ лактозы на спектрометре с индуктивно связанной плазмой

Таблица 1 Данные полуколичественного анализа лактозы на спектрометре с индуктивно связанной плазмой

1 ppm мин.	Na 1.6	P 4.4	\$ 3.1	K 7.2	Ca 1.9	
0.1 ppm мин.	Mg .23					
Менее	Li .0088	Be .0003	B .0047	Al .021	Si .058	Sc .0009
0.1 ppm	Ti .0020	V .0060	Cr .0016	Mn .0010	Fe .021	Co .0046
	Ni .0091	Cu .0077	Zn .0020	Ga .00038	Ge .0028	Sr .0028
	Y .00011	Zr .0020	Nb .00024	Mo .0015	Ru .00096	Rh .00030

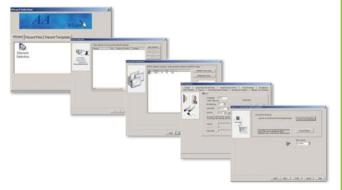
Качественный и количественный анализ неорганических примесей

спектрофотометр

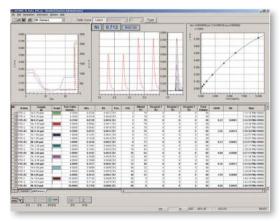
Анализ неорганических примесей с помощью атомно-абсорбционного спектрофотометра

В директивах ІСН неорганические примеси выделены в отдельный класс примесей в фармацевтических продуктах. К неорганическим примесям относятся металлы, источником которых являются металлические катализаторы или оборудование, использующееся для синтеза фармацевтических субстанций. Одним из методов количественного анализа неорганических

примесей в фармацевтических продуктах является атомно-абсорбционный анализ.


Атомно-абсорбционный спектрофотометр АА-7000 эффективен для следового анализа таких опасных элементов, как кадмий и мышьяк. Типичным примером подобного анализа является определение свинца в сахаре-рафинаде.

Особенности спектрофотометра АА-7000


- Прибор характеризуется вновь разработанной трёхмерной оптической схемой. Для измерений в пламени автоматически применяется двухлучевая оптическая схема, а для измерений в печи — высокопроизводительная однолучевая. Оптическая схема спектрофотометра с использованием цифровых оптических элементов, сокращающих потери излучения, позволяет достичь максимальной эффективности определения элементов, как в пламени, так и в печи.
- Новшества в конструкции оптической схемы и обновлённая графитовая печь позволяют улучшить пределы обнаружения (по сравнению с другими продуктами производства компании Shimadzu).
- Цифровой контроль температуры и газовой среды повышают воспроизводимость, в результате чего достигается превосходная эффективность анализа во многих областях применения. Выбирайте идеальную модель для целевого приложения: измерение только в пламени для выполнения быстрого анализа, или измерение только в печи для следового анализа, или систему с двойной атомизацей с устройством автоматической смены атомизаторов.
- Единый автодозатор для работы и в пламени, и в печи.

Атомно-абсорбционный спектрофотометр

ПО для настройки условий анализа

Рабочий экран

WizAArd

Рабочая станция для АА

Атомно-абсорбционный спектрофотометр

Экспериментальные данные

Анализ свинца в сахаре-рафинаде с использованием AA-7000 и GFA-7000

Фармакопея Японии предписывает выполнять анализ сахара-рафинада на содержание свинца. Для измерения используется метод электротермической атомизации (в печи). Он характеризуется высокой чувствительностью и пригоден для анализа образцов малого объёма. Ниже приведен пример анализа модельного образца на основе коммерчески доступного гранулированного сахара, пробоподготовка которого была выполнена в соответствии с требованиями фармакопеи в лабораторном автоклаве высокого давления.

Для определения тяжёлых металлов точную навеску (0,05 г) образца помещали в тефлоновый внутренний сосуд автоклава и добавляли 0,5 мл концентрированной азотной кислоты. Внутренний сосуд помещали в камеру высокого давления, а затем в термостате автоклава поддерживали температуру 150 °C в течение пяти часов, после чего давали термостату остыть.

Объём образца доводили очищенной водой до 5 мл. Полученный образец использовали для проведения измерений. Количественный анализ выполняли методом стандартных добавок с использованием автодозатора. Условия анализа приведены в таблицах 1—3. Результаты измерения лежат ниже предела количественного определения. На рис. 1 показаны наложенные друг на друга типичные профили пиков.

Таблица 1 Параметры монохроматора

Режим поджига	BGC-D2
Ток лампы	Низкий (величина пика) (мА): 10
Длина волны (нм)	283,3
ширина щели (нм)	0,7

Таблица 2 Добавки стандартного раствора

Концентрация добавки	Образец	Разбави- тель	Стандарт Pb: 20 ppb	Общий дозируемый объём
0 ppb	14	6	0	2
1 ppb	14	4	2	20
2 ppb	14	2	4	20
3 ppb	14	0	6	20

Таблица 3 Температурная программа

	Температура (°C)	Время (с)	Режим нагрева	Чувстви- тельность	Расход газа л/мин				
1	60	3	RAMP	REGULAR	0.10				
2	120	20	RAMP	REGULAR	0.10				
3	250	10	RAMP	REGULAR	0.10				
4	600	10	RAMP	REGULAR	1.00				
5	600	10	STEP	REGULAR	1.00				
6	600	3	STEP	HIGH	0.00				
7*	2200	3	STEP	HIGH	0.00				
8	2500	2	STEP	REGULAR	1.00				
	Графитовые кюветы с пиропокрытием								

^{*} Стадия атомизации

На рис. 2 показана калибровочная кривая (метод стандартных добавок). Проведенные измерения демонстрируют возможность количественного определения до 0,3 ppb свинца в растворе, что составляет 0,05 ppm в пересчете на твердое вещество. А это соответствует стандарту с концентрацией 0,5 ppm.

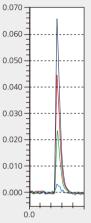


Рис. 1 Профили пиков

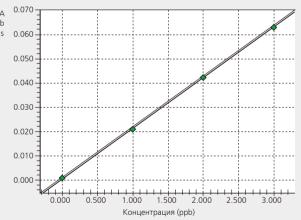


Рис. 2 Калибровочная кривая

Квалификация аналитического оборудования

Квалификация аналитического оборудования

Тенденции в квалификации аналитического оборудования

В приложении USP31 Фармакопеи США описана процедура квалификации аналитического оборудования. Это понятие включает в себя выполнение квалификации и технического обслуживания аналитических приборов в течение всего

жизненного цикла, начиная от Квалификации проекта (DQ) на стадии их проектирования, Квалификации эксплуатации (PQ) при начале действительной их работы и заканчивая поддержанием их эффективности в процессе работы.

Ocyществляемая компанией Shimadzu поддержка Квалификации аналитических приборов

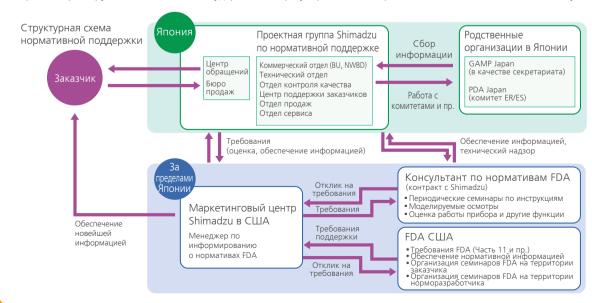
Квалификация проекта (DQ)

Это документированный комплекс мероприятий, в ходе которых на основе целевого назначения прибора разрабатывают технические требования и указания по эксплуатации и определяют критерии выбора производителя.

Поддержка Квалификации установки (IQ)

Это документированный комплекс мероприятий, в ходе которых устанавливают, что комплект поставки соответствует проекту, монтаж в заданных условиях выполнен надлежащим образом, при этом указанные условия пригодны для эксплуатации прибора.

Поддержка Квалификации функционирования (OQ)


Это документированный комплекс мероприятий, в ходе которых устанавливают, что прибор работает в соответствии с эксплуатационными характеристиками в заданных условиях

Поддержка Квалификации эксплуатации (PQ)

Это документированный комплекс мероприятий, в ходе которых устанавливают, что прибор работает единообразно в соответствии с техническими требованиями пользователя и пригоден для использования по назначению.

Поддержка квалификации аналитического оборудования на примере США

Компания Shimadzu обеспечивает полную специализированную поддержку в течение всего срока службы прибора — от консультаций перед началом его установки до периодической проверки установленного оборудования. Сотрудники Shimadzu оперативно реагируют на изменения в государственном регулировании и стараются максимально помочь заказчику.

■ Поддержка квалификации аналитического оборудования от компании Shimadzu

В соответствии с требованиями GxP по квалификации аналитических приборов и компьютеризованных систем, компания Shimadzu вместе в приборами и программными продуктами поставляет заказчику такие документы как: IQ/OQ, верификационный сертификат и отчёты о проверке оборудования в соответствии с ISO 9001. Более того, наши сертифицированные сервис-инженеры помогают заказчикам в выполнении квалификации оборудования.

Поддержка Квалификации проекта (DQ)

При выборе аналитических приборов необходимо организовать Квалификацию проекта (DQ). Факторами, вызвавшими необходимость DQ, являются иногда встречающаяся низкая квалификация поставщиков, а также необходимость соответствия характеристик прибора требованиям пользователя.

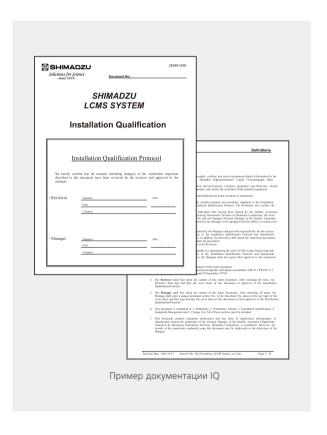
Для проведения эффективного процесса DQ требуется тесное сотрудничество пользователя и поставщика. Компания Shimadzu широко поддерживает DQ заказчика для оценки поставщика и активно работает с заказчиками, чтобы характеристики прибора обязательно соответствовали всем заявленным требованиям.

Поддержка Квалификации установки (IQ)

При выполнении Квалификации установки (IQ) требуется, чтобы аналитические приборы были установлены надлежащим образом в соответствии с запроектированными для них условиями и чтобы установка приборов была документально зафиксирована.

Компания Shimadzu не только предоставляет руководство по проведению IQ и необходимые для этого документы, но и предоставляет для выполнения IQ специально обученных сервис-инженеров.

Поддержка Квалификации функционирования (OQ)


При выполнении Квалификации функционирования (OQ) требуется проверить, что аналитические приборы работают в соответствии с заявленными для них характеристиками. Компания Shimadzu не только предоставляет руководство по проведению OQ и необходимые для этого документы, но и предоставляет для выполнения OQ специально обученных сервис-инженеров.

В случае необходимости также предоставляются стандартные образцы и необходимое дополнительное оборудование. Кроме того, можно заказать профилактическое техническое обслуживание и профилактическую квалификацию приборов.

Полная поддержка по контракту на консультации и техническое обслуживание

Shimadzu предлагает заключение контрактов на консультационную поддержку и техническое обслуживание.

Такая всесторонняя поддержка поможет улучшить работу лаборатории, а также вывести на новый уровень достоверность получаемых данных.

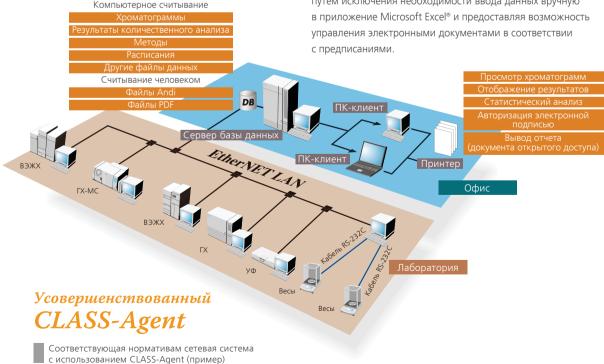
Управление данными

■ Требования к электронным документам и электронным

подписям

Политика FDA 21 CFR Часть 11 и Министерства здравоохранения, труда и социальной политики Японии, касающаяся электронных документов и электронных подписей, выдвигает требования по переходу от записей на обычных бумажных носителях к электронным записям. Программное обеспечение при этом должно надёжно обеспечивать безопасность и целостность данных, то есть данные должны быть воспроизводимы в любой момент, а перезапись, редактирование или удаление первичных данных запрещены. Кроме того, должна быть обеспечена прослеживаемость получения аналитических данных, из которой должно быть ясно, кто и когда произвел определенную операцию.

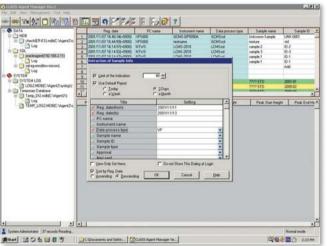
■ Особенности ПО CLASS-Agent

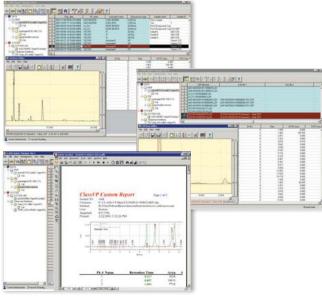

• Программное обеспечение CLASS-Agent безопасно и в полном объеме управляет данными, полученными на аналитическом приборе и хранящимися в базе данных. Зарегистрированные данные легко найти и отредактировать, а также при необходимости приложить к ним электронную подпись.

■ Соответствие ПО CLASS-Agent требованиям к электронным документам и электронным подписям

Компания Shimadzu обеспечивает соответствие требованиям к электронным документам и электронным подписям для всего аналитического оборудования лаборатории, включая хроматографы (ЖХ, ГХ, ЖХ-МС, ГХ-МС и т.п.), спектрофотометры (УФ, ИК-Фурье, АА и т.п.), анализаторы общего органического углерода (ТОС), термоанализаторы и электронные весы.

Весомый вклад в это направление вносит платформа Class Agent


- Полученные на аналитических приборах данные можно отредактировать, приложить к ним электронную подпись, а также создать их резервную копию при помощи лишь одного запущенного экземпляра приложения CLASS-Agent Manager, обеспечивающего эффективное управление электронными данными во всей лаборатории.
- Кроме того, приложение CLASS-Agent Report упрощает создание отчетов и позволяет достичь соответствия требованиям путём исключения необходимости ввода данных вручную в приложение Microsoft Excel® и предоставляя возможность управления электронными документами в соответствии с предписаниями.


Управление данными и их просмотр в CLASS-Agent

В базу данных CLASS-Agent автоматически записываются помимо данных анализа ещё и время и дата анализа, имя оператора, название прибора, название образца и прочая информация. Данные никогда, даже при обработке данных, не перезаписываются с целью обеспечения прослеживаемости записей.

Более того, полученные на каждом приборе данные можно просмотреть только в CLASS-Agent Manager. Данные анализа легко найти при помощи функций поиска и сортировки, что значительно повышает эффективность управления данными и их просмотра.

Поиск данных

Просмотр хроматограммы, спектра и информации из отчёта

Электронная подпись

Приложение CLASS-Agent Manager одновременно с данными анализа может сохранять в базе данных электронную подпись (имя подписавшегося, дата и время, причина) на записанных в электронном виде данных анализа. Кроме того, порядок проставки электронной подписи можно определять в соответствии со схемой рабочего процесса.

Cоздание отчета, содержащего разные данные при помощи приложения CLASS-Agent Report

Приложение CLASS-Agent Report позволяет превратить CLASSAgent в систему создания отчётов, содержащих разные данные. Это позволяет создавать отчёты, собирающие воедино полученные на разных приборах данные, например на весах и ВЭЖХ, в единый отчёт без необходимости сбора данных вручную. Создание отчётов не представляет затруднений с использованием существующих шаблонов отчёта Microsoft Excel, при этом созданный отчёт надёжно сохраняется в базе данных CLASS-Agent.

 $\operatorname{\mathcal{I}A\Pi} 1$ Выберите данные анализа и запустите приложение Agent Report

Выбор шаблона

ЭТАП З Автоматическое создание отчёта и его регистрация

Shimadzu Corporation www.shimadzu.com/an/

Использованные в данной публикации названия компаний, продуктов и сервисов являются торговыми марками и торговыми наименованиями Корпорации Shimadzu или её дочерних компаний, независимо от того, отмечены они символами «ТМ» или «®» или нет. В данной публикации могут быть использованы торговые марки и торговые наименования, принадлежащие третьим сторонам, для обозначения либо этих организаций, либо для предоставляемых ими продуктов и сервисов. Корпорация Shimadzu отрицает любую финансовую заинтересованность в не принадлежащих ей торговых марках и торговых наименованиях.

Только для исследовательских целей. Не использовать для проведения диагностических процедур. Содержащаяся здесь информация представлена без гарантии качества в любом виде, в том числе без ограничений гарантии по качеству и полноте. Компания Shimadzu не принимает на себя ответственность за любой ущерб, прямой или непрямой, связанный с использованием данной публикации.